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Abstract

We present a new prescription (called the rV prescription) for treating classically forbidden surface hops in

semiclassical trajectory surface hopping simulations. The new method uses gradient information about the target

electronic surface to determine the nuclear dynamics at a frustrated hopping event. We have tested this prescription,

along with previously suggested prescriptions, against accurate quantum dynamics for 21 cases. We find that the fewest

switches with time uncertainty (FSTU) algorithm with therV prescription for momentum changes at frustrated hops is
the most accurate of the six variants of the surface hopping approach that we tested.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Electronically nonadiabatic chemical dynamics
(e.g., nonadiabatic charge transfer, ultraviolet

photodissociation, chemiluminescence, etc.) is de-

scribed by coupled potential energy surfaces, and

the applicability of fully converged quantum me-

chanical calculations is limited by computational

considerations to systems with two atoms or three

atoms and a few electronic states. It is desirable,

therefore, to develop and validate the accuracy of
approximate methods that may be applied to the

large class of chemically interesting electronically

nonadiabatic systems for which quantum me-

chanical calculations are not currently computa-

tionally feasible.

We have recently undertaken a program of de-
veloping realistic coupled potential energy surfaces

for model three-atom reactive systems, performing

fully three-dimensional accurate quantum calcu-

lations on the model systems, and systematically

testing semiclassical methods against the accurate

quantum calculations [1–7]. We have focused on

semiclassical methods that are well defined so that

they are systematically testable, computationally
straightforward to implement, and readily appli-

cable to large systems. Specifically, we have fo-

cused on methods that are based on what may

be called the �trajectory ensemble� or TE ap-

proach [8], where the nuclear wave packet is

approximated as an ensemble of noninteracting

classical trajectories.
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Of course, classical trajectories do not exhibit

quantum effects (such as transitions between elec-

tronic states, tunneling, etc.), and when these ef-

fects are important, they must be explicitly added

to the TE simulation. The key quantum effect for

electronically nonadiabatic processes is the non-
adiabatic transition itself, and a careful treatment

of quantum transitions between electronic states is

crucial in accurately modeling the dynamics of

electronically nonadiabatic systems. The trajectory

surface hopping [1–15] (TSH) approach starts

from the TE formalism and includes nonadiabatic

dynamics by allowing the trajectories in the en-

semble to suddenly switch (i.e., to hop between)
electronic states. The present Letter is primarily

concerned with the treatment of the nuclear mo-

mentum at so-called frustrated hopping points

along the classical trajectory in the TSH method.

2. Theory

Briefly, the TSH method is implemented as fol-

lows. One first chooses an electronic representation

with which to express the electronic energies and the

electronic-state coupling. The potential energy

surfaces for a nonadiabatic chemical systemmay be

chosen either as the unique set of adiabatic potential

energy surfaces, coupled by the nuclear momentum

and nuclear kinetic energy operators and corre-
sponding to electronic wave functions that are ei-

genfunctions of the electronic Hamiltonian, or as a

nonunique set of diabatic potential energy surfaces,

for which the nuclear momentum coupling and

nuclear kinetic energy coupling is small compared

to a scalar (potential energy) coupling introduced

by the adiabatic–diabatic transformation. (Some-

times diabatic states are called �quasidiabatic� to
emphasize that, in general, except for the trivial case

of frozen electronic wave functions, a diabatic rep-

resentation whose nuclear momentum couplings

are exactly zero does not exist for real chemical

systems [8,16,17]). Quantummechanically, diabatic

representations and the adiabatic representations

obtained by diagonalizing the potential energy re-

sult in identical dynamics. TSH simulations, how-
ever, are sensitive to the choice of electronic

representation, and we have determined [5] that the

best representation to use is the one with the

least amount of nonadiabatic coupling as mea-

sured by the number of attempted surface hops.

This best representation (called the Calaveras

County or CC representation) may be estimated

from a small batch of TSH trajectories run in both
representations.

Once an electronic representation is chosen,

each trajectory in the ensemble is assigned an ini-

tial electronic state that corresponds to the initial

conditions of the simulation. For example, if the

quenching of an excited electronic state is being

modeled, all of the trajectories start in the excited

electronic state. The initial coordinates and mo-
menta of each trajectory are selected randomly

from a quasiclassical distribution [18], such that

the initial ensemble of positions and momenta

mimics the initial quantum mechanical wave

packet. Each trajectory is then propagated classi-

cally (i.e., using Hamilton�s equations of motion)
under the influence of the potential energy surface

that corresponds to the initial electronic state.
At arbitrarily small time intervals (such as the

time step of the integrator), an electronic transition

(or hopping) probability gij from the currently oc-
cupied electronic state i to some other target elec-

tronic state j is computed according to Tully�s
fewest-switches (TFS) algorithm [12,15]. The few-

est-switches hopping probability is a function of the

quantum mechanical electronic state populations,
which are obtained by integrating the electronic

Schr€oodinger equation along the classical trajectory.
When this particular choice for the hopping prob-

ability is used, the TSH method is called the TFS

method. A random number is generated and com-

paredwith gij to determine if a surface hop occurs. If
a surface hop does not occur, the trajectory remains

in the currently occupied electronic state. If a hop is
called for, an electronic state change occurs, and the

trajectory is propagated under the influence of the

potential energy surface corresponding to the new

electronic state.

Each trajectory in the ensemble may be thought

of as an energy-conserving gas-phase event. When

a surface hop occurs, the potential energy, in

general, changes discontinuously, and the total
energy of the system is conserved by adjusting the

nuclear momentum. It has been suggested on the
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basis of semiclassical arguments [11,13] and con-

firmed with numerical tests against accurate

quantum dynamics [1,2] that the best way to

conserve energy is to adjust the nuclear momen-

tum component in the direction of the hopping

vector h, where h is a unit vector in the direction of
the nuclear momentum coupling vector d. Whether

or not a hop occurs, the trajectory is propagated

forward one time step where another hopping

decision is made, etc. . ., and the process is con-
tinued until the trajectory is deemed �finished� by
some criterion (usually the separation of the

products).

Occasionally, a surface hop to a higher-energy
electronic state is called for at a point along the

trajectory where the energy gap between the oc-

cupied and the target electronic states is greater

than the kinetic energy associated with the mo-

mentum along h. When this occurs, the momen-

tum cannot be adjusted along h in such a way as to

conserve total energy, and these failed hopping

attempts are called �frustrated� or �classically for-
bidden� surface hops [6,7].
Previous treatments for frustrated hopping in-

clude ignoring the frustrated hop [14] or reflecting

the nuclear momentum along h as though the

trajectory hits a barrier as it tries to hop, and we

will denote these two approaches with a �+� and a
�)�, respectively (e.g., the TFS+ and TFS) meth-
ods employ the same surface hopping algorithm,
but differ in their treatment of frustrated hopping).

In both cases, the trajectory continues without

changing electronic states, which violates the self-

consistency argument originally used to justify the

TFS algorithm [12]. Numerical studies [6,7] of

these methods have shown that the resulting elec-

tronic-state distribution of trajectories results in

increased errors. (We note that Tully�s original
implementation of the TFS method was the TFS)
method [19]. We also note that in some work both

criteria have been used depending on other details

of the frustrated hop [3,10], or the momentum was

changed along directions other than h [3,4,6], but

we have found [3,4,6] that such methods do not

improve the accuracy compared to the simple +

and ) prescriptions.)
We have recently developed [7] a new imple-

mentation of the TSH method called the fewest

switches with time uncertainty (FSTU) method

which allows a trajectory that experiences a

frustrated hop to hop nonlocally to a geometry

along the trajectory where a hop is classically

allowed so long as the nonlocal hopping point is

within a time interval obtained from the time–
energy Heisenberg uncertainty relations. (In other

respects, the FSTU method is the same as the

TFS algorithm.) By introducing nonlocal hop-

ping, the FSTU method improves the electronic-

state distribution of trajectories, and the FSTU

method was found [7] to be more accurate than

the TFS method. Although the FSTU method

has less frustrated hopping than the TFS method,
not all frustrated hops are removed, and therefore

we have previously considered [7] two imple-

mentations of the FSTU method, namely FSTU+

and FSTU).
From numerical studies [6,7], we found that, in

general, the TFS+ and FSTU+ methods are more

accurate in predicting the average rotational and

vibrational quantum numbers than are the TFS)
and FSTU) methods, respectively, whereas the

TFS) and FSTU) methods predict more accurate
nonadiabatic transition probabilities and branch-

ing ratios. It is therefore reasonable to attempt to

combine these two approaches. We note that a

previous attempt [10] to combine the + and )
approaches was unsuccessful because it relied on a

nonphysical criterion for discriminating between
the + and ) treatments. In particular, the criterion
was based on the amount of energy in modes or-

thogonal to h at a frustrated hop.

A new physically motivated prescription, called

the rV prescription, is presented here that com-

bines the desirable features of the + and ) treat-
ments in a more physically motivated fashion

while retaining the simple implementation of the
TSH method. Using the rV prescription, the dy-
namics at a frustrated hopping event is determined

by allowing the trajectory to instantaneously feel

the target electronic state. Specifically, when a

frustrated hop is encountered, the following

quantities are computed:

ph ¼ p � h; ð1Þ

Fh ¼ �rVj � h; ð2Þ
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where p is the nuclear momentum of the trajectory

andrVj is the gradient of the target electronic state

j. Eqs. (1) and (2) are the projection of the nuclear

momentum and the force of the target electronic

state along the hopping vector h, respectively. If
these two quantities have the same sign, the target

electronic state can be thought of as instantaneously

accelerating the trajectory along h, whereas if the

two quantities have opposite signs, the target elec-

tronic state instantly retards the trajectory along h.

We therefore use the following criterion for frus-

trated hopping

If phFh
P 0 theþ treatment is used;
< 0 the� treatment is used:

�
ð3Þ

The rV criterion has several desirable features: it
contains both + and ) treatments, it is simple to
implement, it requires only information that is

readily available in surface hopping computer

codes, it is physical as it depends only on the com-

ponents of themomentumalong the hopping vector

h to determine the nonadiabatic dynamics, and it

incorporates a knowledge of the character of the

excited surface to differentiate whether the + or )
treatment is used.

3. Calculations

We tested the FSTUrV , FSTU+, and FSTU)
methods against accurate quantum mechanical

results for a total of 21 test cases involving fully
three-dimensional collisions of systems with real-

istic potential energy surfaces. Four parameter-

izations of the YRH system [6] with three different

sets of initial conditions for the Y*+RH collision

partners and three parameterizations of the MXH

system [20] with three different sets of initial con-

ditions for the M* + XH collision partners were

included in the test set. In both cases, an asterisk
denotes electronic excitation. Descriptions of the

surfaces, the initial conditions, and the quantum

mechanical calculations for the YRH and MXH

surfaces have appeared previously [6,20]. The en-

tire set of 21 test cases is qualitatively diverse and

use of such a diverse set of test cases ensures

against fortuitous agreement between the semi-

classical and quantum mechanical results. The CC

electronic representation was used for all of the

semiclassical calculations.

Unsigned relative errors (UREs) were com-

puted for eight observables: the reactive de-exci-

tation probability PR to produce R + YH or H +

MX, the nonreactive de-excitation (quenching)
probability PQ to produce Y + RH or M + XH, the

total de-excitation probability PN ¼ PR þ PQ, the
product branching fraction FR ¼ PR=PN, the aver-
ages (first moments) of the final reactive vibra-

tional and rotational quantum numbers v0 and j0,
and the averages (first moments) of the final

quenching vibrational and rotational quantum

numbers v00 and j00. Note that all reactive events are
electronically nonadiabatic; electronically excited

channels of R + YH or H + MX are not ener-

getically accessible.

4. Results and discussion

For each of the eight observables, the UREs
were averaged over all 12 YRH cases, all 9 MXH

cases, and all 21 cases, and the resulting mean

unsigned relative errors (MUREs) are summarized

in Table 1. The average MURE for the four mo-

ments, the four probabilities, and all eight ob-

servables are also shown for each method in the

last three columns of Table 1. The method with the

lowest MURE is shown in bold for each case.
Uncertainties in the MUREs were computed using

the Monte Carlo uncertainties in the calculated

observables (these uncertainties result from finite

sampling of initial collision variables such as vi-

brational phase and rotational orientation). If

another method has an MURE that is statistically

indistinguishable (within a 1r range) from the

method with the lowest MURE, that method is
also listed in bold, and all bold entries are con-

sidered as �statistically significant winners.� Table 1
shows that treatment of the nuclear momentum at

frustrated hops has a significant effect on the re-

active probability PR and the product branching
fraction FR. For both the YRH andMXH systems,
the FSTUrV method is more accurate than the

FSTU+ and FSTU) methods for PR and FR. For
PQ and PN, all three methods are statistically in-
distinguishable for both the YRH and MXH
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Table 1

Mean unsigned relative errors (MUREs) for the 12 YRH cases, the 9 MXH cases, and all 21 casesa

System Method PR hv0i hj0i PQ hv00i hj00i PN FR Momsb Probsc Alld

YRH FSTU+ 1.25 0.14 0.15 0.21 0.27 0.79 0.19 1.12 0.34 0.69 0.51

FSTU) 0.75 0.20 0.14 0.22 0.37 0.88 0.18 0.67 0.40 0.46 0.43

FSTUrV 0.54 0.18 0.14 0.20 0.34 0.92 0.15 0.63 0.40 0.38 0.39

MXH FSTU+ 1.09 0.29 0.13 0.24 0.13 0.16 0.30 0.66 0.18 0.58 0.38

FSTU) 0.98 0.27 0.13 0.23 0.14 0.16 0.29 0.58 0.17 0.52 0.35

FSTUrV 0.88 0.28 0.13 0.26 0.12 0.15 0.26 0.54 0.17 0.48 0.33

Bothe FSTU+ 1.18 0.20 0.14 0.22 0.21 0.52 0.24 0.92 0.27 0.64 0.46

FSTU) 0.85 0.23 0.13 0.23 0.27 0.57 0.23 0.63 0.30 0.48 0.39

FSTUrV 0.69 0.23 0.14 0.23 0.25 0.59 0.20 0.59 0.30 0.42 0.36

a The methods with the statistically lowest MUREs for each observable are given in bold. See the text for more details.
bAverage of the hv0i, hj0i, hv00i, and hj00i MUREs.
cAverage of the PR, PQ, PN, and FR MUREs.
dAverage of all eight MUREs.
eMUREs averaged over all 21 test cases.

Table 2

Unsigned relative errors for the 12 YRH and 9 MXH cases

System Initial conditionsa Parameterizationb PN FR

FSTU+ FSTU) FSTUrV FSTU+ FSTU) FSTUrV

YRH (1.10, 0) 0.20 0.38 0.32 0.14 0.71 0.42 0.10

0.10 0.06 0.08 0.17 0.57 0.30 0.15

0.03 0.15 0.15 0.05 0.37 0.08 0.07

0.01 0.33 0.33 0.14 0.07 0.07 0.06

(1.10, 6) 0.20 0.01 0.09 0.02 0.54 0.36 0.60

0.10 0.26 0.29 0.24 0.66 0.67 0.74

0.03 0.10 0.07 0.11 0.31 0.39 0.46

0.01 0.11 0.07 0.13 0.51 0.40 0.60

(1.02, 0) 0.20 0.66 0.60 0.45 0.50 0.00 0.24

0.10 0.09 0.13 0.18 3.58 2.37 1.73

0.03 0.05 0.03 0.05 2.30 1.63 1.18

0.01 0.07 0.05 0.15 3.26 1.38 1.57

Average of YRH cases 0.19 0.18 0.15 1.12 0.67 0.63

MXH (1.10, 0) SB 0.53 0.44 0.43 0.77 0.58 0.48

SL 0.21 0.21 0.18 1.11 1.07 1.00

WL 0.35 0.34 0.31 0.14 0.12 0.08

(1.10, 1) SB 0.19 0.18 0.15 1.45 0.99 0.94

SL 0.18 0.19 0.15 1.46 1.42 1.35

WL 0.47 0.48 0.45 0.19 0.17 0.10

(1.10, 2) SB 0.20 0.16 0.12 0.23 0.33 0.38

SL 0.40 0.40 0.37 0.50 0.45 0.43

WL 0.19 0.19 0.18 0.12 0.13 0.08

Average of MXH cases 0.30 0.29 0.26 0.66 0.58 0.54

Average of all 21 cases 0.24 0.23 0.20 0.92 0.63 0.59

a The initial conditions are denoted (Etot=eV, j), where Etot is the total energy in eV and j is the initial rotational state of the diatom.
For more details see [6,20] for the YRH and MXH systems, respectively.
b See [6,20] for descriptions of the YRH and MXH parameterizations, respectively.
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cases. The three methods predict all four MXH

moments and three of the four YRH mo-

ments equally well. In the case of the quenching

vibrational moment, the FSTU+ and FSTUrV
methods are statistically preferred over the

FSTU) method for the YRH system.
Table 1 contains highly averaged errors over

observables with varying magnitudes. Table 2

shows the UREs on a case-by-case basis for PN
and FR and supports the conclusion drawn from
Table 1 that the FSTUrV method is the best

method for FR. Specifically, the FSTUrV method
has the statistically significant lowest URE for FR
for 14 of the 21 cases. We note that the trends in
PR are similar to the trends in FR, and PR is

therefore not included in Table 2. Table 2 also

reveals a trend in PN that does not show up in the
MUREs shown in Table 1. The FSTUrV method
has the statistically significant lowest URE for 19

of the 21 test cases for PN. For the remaining two
cases, the URE for all three methods is below 20%,

where a 20% relative error may be considered
satisfactory for semiclassical methods. We con-

clude therefore that the FSTUrV method is better
than the FSTU+ and FSTU) methods for PN, PR,
and FR.
In order to perform a case-by-case analysis on

all eight of the observables without going into

great detail, we have developed a scorecard

method of evaluating the methods. In the score-

card method, for each of the eight observables a

score of 1.0 is given to the statistically significant

winning methods (as defined above), and a score

of 0.0 is given to all other methods for that ob-

servable. The scores are then averaged over all 12

cases for YRH and all 9 cases for MXH. An
average score of 1.0 or 0.0 indicates that the

method predicts the statistically significant lowest

unsigned error for all or none of the test cases,

respectively. Table 3 shows these average scores

for each observable. For each of the two kinds of

systems (YRH and MXH), we averaged these

average scores over all four probabilities, all four

moments, and all eight observables, as shown in
the last three columns of Table 3. Finally, we

averaged over both kinds of systems, as shown in

the last three rows. All averages are unweighted.

Table 3 confirms the trends inferred from Tables

1 and 2, namely that the FSTUrV method is

greatly preferred over the other two methods in

predicting probabilities (scoring 70% higher than

the second-place method), that the FSTU+
method is preferred for predicting moments

(scoring 22% higher than the second-place meth-

od), and that the FSTUrV method is the best

method overall (scoring 18% higher than the

second-place method). Since there is no unique

way to decide which method is �better� over a
diverse test set, we believe that it is encouraging

that the mean unsigned relative errors and the

Table 3

Scorecard for the 12 YRH cases, the 9 MXH cases, and all 21 casesa

System Method PR hv0i hj0i PQ hv00i hj00i PN FR Momsb Probsc Alld

YRH FSTU+ 0.33 0.92 0.92 0.83 1.00 0.67 0.67 0.25 0.88 0.52 0.70

FSTU) 0.58 0.58 0.83 0.67 0.25 0.67 0.50 0.50 0.58 0.56 0.57

FSTUrV 0.67 0.75 0.83 0.83 0.25 0.42 0.83 0.50 0.56 0.71 0.64

MXH FSTU+ 0.11 0.78 0.78 0.56 0.67 0.89 0.44 0.11 0.78 0.31 0.54

FSTU) 0.00 1.00 0.78 0.78 0.56 0.78 0.56 0.11 0.78 0.36 0.57

FSTUrV 0.89 0.78 0.89 0.67 0.44 1.00 1.00 0.89 0.78 0.86 0.82

Bothe FSTU+ 0.22 0.85 0.85 0.69 0.83 0.78 0.56 0.18 0.83 0.41 0.62

FSTU) 0.29 0.79 0.81 0.72 0.40 0.72 0.53 0.31 0.68 0.46 0.57

FSTUrV 0.78 0.76 0.86 0.75 0.35 0.71 0.92 0.69 0.67 0.78 0.73

a See Section 4 for a description of the scorecard method.
bAverage of the hv0i, hj0i, hv00i, and hj00i scores.
cAverage of the PR, PQ, PN, and FR scores.
dAverage of all eight scores.
eAverage of the YRH and MXH scores.
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scorecard method lead to the same conclusions.

Furthermore, it is pleasing that the prescription

that has the best physical justification also turns

out to be the prescription that performs the most

accurately.

We note that the FSTUrV results in Tables 1
and 2 support our previous observation [6] that the

semiclassical trajectory approach is reasonably

accurate for modeling the dynamics of systems

with weakly coupled electronic states. The YRH

systems feature highly classically forbidden elec-

tronic transitions (the quantum mechanical values

of PN range from 0.2 to 10�4), and the overall

MURE of the improved semiclassical method
(FSTUrV ) for these systems is 39%. For the more
strongly coupled MXH systems (with quantum

mechanical PN from 0.5 to 0.7), the overall MURE
is 33%. Considering the probabilities only, the

FSTUrV method performs better for the small-

probability YRH cases than for the MXH cases,

with average MUREs for the probabilities of 38%

and 48%, respectively.
We also tested the TFS+, TFS), and TFSrV

methods and obtained similar trends with respect

to the treatment of frustrated hopping (i.e., the

TFSrV method is more accurate than the TFS+

and TFS) methods). We have previously shown
[7] that the FSTU method is, in general, more

accurate than the TFS method, and the same

trends occur when both algorithms are imple-
mented with the rV prescription, i.e., the

FSTUrV method has a smaller average error than
the TFSrV method. We also remind the reader

that in previous papers [1–6], we have tested sev-

eral other algorithms for treating surface hops,

and this Letter results from a distillation of those

efforts in that the methods presented here are only

the very best methods.

5. Concluding remarks

The accuracy of semiclassical dynamics calcu-

lations using the trajectory surface hoppingmethod

for simulating non-Born–Oppenheimer processes is

determined by the accuracy of the potential energy
surfaces and the surface couplings, the selection of

initial conditions, nonhopping trajectory propaga-

tion, the treatment of successful surface hops, and

the treatment of frustrated hopping. We have

shown in this work and previously [6,7] that frus-

trated hopping can be very important for realistic

chemical systems, and allowing nonlocal hopping

(as in the FSTU algorithm) and carefully treating
frustrated hopping (as in the rV prescription) can
have a significant quantitative effect on the overall

semiclassical dynamics, and in some cases the

treatment of frustrated surface hops is the domi-

nant potential source of error. Semiclassical simu-

lations of electronically nonadiabatic dynamics

should therefore explicitly address the treatment of

frustrated hopping, and based on the numerical
studies presented here and elsewhere [6,7], we rec-

ommend the FSTUrV method as the most suc-

cessfully validated option for trajectory surface

hopping calculations.
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